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Abstract

This paper presents a method for registration of
terrain models created using stereo vision on a
planetary rover. Most 3D model registration ap-
proaches use some variant of iterated closest point
(ICP), which minimizes a norm based on the dis-
tances between corresponding points on an arbi-
trary 3D surface, where closest points are taken to
be corresponding points. The approach taken here
instead projects the two surface models into a com-
mon viewpoint, rendering the models as they would
be seen from a single range sensor. Correspondence
is established by determining which points on the
two surfaces project to the same location on the
virtual range sensor image plane. The norm of the
deviations in observed depth at all pixels is used
as the objective function, and the algorithm finds
the rigid transformation which minimizes the norm.
This recovered transformation can be used for vi-
sual odometry, rover pose estimation and feature
hand off.

1 Introduction

Single cycle instrument placement (SCIP) is a crit-
ical need for the planned MSL 2009 rover mission
to Mars. The goal of SCIP is to enable a planetary
rover to place an instrument on a scientifically in-
teresting point on the terrain from a distance of 10
meters with a single rover command[1].

The first step in SCIP is the navigation of the
rover to a location that places the terrain point
within the workspace of an arm which carries an
instrument. Once positioned, the rover servos the
instrument into place for taking a measurement.

Figure 1: K9 rover placing its microscopic camera,
on a science target in the Marscape

All of this happens within one command cycle, so
that once an operator selects a science target, the
next response from the rover is the data that was
requested. Single cycle instrument placement will
significantly increase science return per unit of op-
erational time over the stop and move, human-in-
the-loop operation of the Sojourner rover.

Two technology needs within SCIP are pose es-
timation and feature hand off. Pose estimation is
required in order to place the rover within reach of
the science target. Registration of terrain models
from different rover locations can be used to re-
cover the pose of the rover in the different views.
Feature hand off may be required to provide a bet-
ter 3D model of the instrument goal location for
the final step of instrument placement using im-
agery from hazard avoidance cameras closer to the
ground. Registration of terrain models from the
navigation cameras and hazard cameras provides a
calibration which can be used for handing off the
goal location from one stereo pair to the other.



This paper focuses on the problem of terrain
model registration. The method presented in this
paper uses stereo vision to build 3D terrain models,
then uses an algorithm similar to ICP to find the
rigid transformation which aligns two terrain mod-
els. The important difference between the method
presented here and the popular ICP algorithm is
the use of a sensor model which projects the two
views into a virtual range sensor and minimizes the
difference between the measured depth to points on
the two models. Using a rendering model removes
the need to search for corresponding points with
a distance heuristic. At the correct registration,
corresponding points project onto the same range
sensor pixel.

2 Previous work

The Iterated Closest Point algorithm (ICP) algo-
rithm was proposed independently by Chen and
Medioni[2] and by Besl and MacKay][3] to recover a
rigid transformation between two point clouds with
unknown correspondence. The method relied on
a step which used a nearest neighbor heuristic to
establish correspondence between points, followed
by a step which computed the rigid transformation
between the point clouds in closed form using tech-
niques which had been studied earlier[4, 5]. ICP
was later extended to handle multiple views[6, 7,
8, 9], where there is no longer a known closed form
solution for the alignment of all views even when
the correspondences are known. A good survey of
efficient variants on the original ICP algorithm can
be found in [10].

An important extension to the original ICP al-
gorithm was a modification to the objective func-
tion which minimizes the distance between a ver-
tex in one model and the nearest point on the sur-
face of the other model, rather than the nearest
vertex[11]. This extension captures the fact that
changes in the rigid transformation which cause a
point to move along a surface should not be penal-
ized. The derivatives of the cost function reflect the
fact that the distance between a point and a plane
only changes when the point moves in a direction
parallel to the surface normal.

Methods other than ICP have also been used for
model registration, including the general purpose
Expectation-Maximization algorithm[12], and gen-

eral purpose nonlinear optimization using robust
M-estimators[13]. The latter approach is attrac-
tive. Fitzgibbon showed that besides increasing the
robustness of the registration solution to outliers
in the data, using Levenberg-Marquardt to mini-
mize a robust norm converges to a solution rapidly
and has a significantly larger basin of attraction
than least squares. Because of these properties, ro-
bust estimation with Levenberg-Marquardt is used
in this work.

3 Approach

This section describes the technical approach used
for terrain model registration. The approach relies
on two key parts. The first is a sensor model which
predicts the observations that should be seen under
a hypothesized transformation for the surface mod-
els. The second is the Levenberg-Marquardt[14, 15,
16] nonlinear optimization method, along with an
extension which incorporates robust estimation us-
ing iteratively reweighted least squares[17, 18, 19].

3.1 Sensor modeling

For every pixel in the left camera image for which
a correspondence is found in the right camera im-
age, the stereo algorithm estimates the depth to
that point. These depth estimates are combined to
produce a 3D model of the surface. If two models
of a surface are made from different locations, the
rigid transformation that aligns the two models can
be used to determine the coordinate transformation
between views.

The surface models are represented by triangu-
lated meshes with vertices v and v’. If the two 3D
models contain some region of overlap, there should
be a rigid transformation that aligns the two over-
lapping regions on the two surfaces. We represent
the rigid transformation using the parameter vector
p = (z,y,2,a,3,7)T corresponding to 3 transla-
tion directions plus rotation in roll, pitch, and yaw.
These parameters define a transformation matrix
Tp. If p is the parameter describing the transfor-
mation between surfaces v and v', then for every
pair of corresponding points v; and v; the relation-
ship
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Figure 2: Each pixel in the range image is predicted
by rendering the corresponding mesh facet into a
virtual range sensor.

holds. With real observations this equality will not
hold. The approach taken in ICP is to minimize the
Fuclidean distance between points. In this work,
we project these two models into a virtual range
sensor view and minimize the difference between
the depths at each point.

Rendering takes O(n) operations, where n is the
number of pixels in the virtual range sensor. For
each facet on the mesh v/, the three vertices v}, v},
and v}, are projected onto the image plane, creating
a triangle. For every pixel inside that triangle, the
location of the intersection of the camera ray n.
and the facet of the mesh is a point s] which is a
convex combination of the vertices,

(2)

with a;+oa;+ap = 1. The depth to the intersection
point is the z coordinate in the camera frame,

[ ! !
S; = Q;V; + VvV, + Qg vy,

zi =M. - s 3)

The vector of all depths z; is denoted z. The surface
model v’ does not move during registration, so z is
a constant.

The depth to the point v; changes with p. Sim-
ilarly to (2) and (3), we write

S; = Tp(aivi + a;v; + akvk)

hi(p) = (4)

and h(p) is the vector containing all predicted
depths h;(p). We then define an objective function
which is the sum of squared deviations between the
projected depths

ﬁc-s,-

Figure 3: The Jacobian of the depth measurement
is found by projecting the derivative of the vertex
locations onto the surface normal.
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J2 = 5(2 - h(p))"R ' (z — h(p)) ()

The goal of the registration then is to minimize (5).
Using Levenberg-Marquardt requires the gradient
and approximate Hessian

Ve = —H'R '(z—-h(p))
Vi), ~ H'RT'H (6)
to compute the updated parameter
plt) = p) L (V2L +AD) 7'V dy ()

The parameter A is used to dynamically mix
Newton-Raphson style updates with gradient de-
scent style updates. If an update results in
J(tY) > J(pD) then X is increased and p(+h
recomputed. A more complete description of the
general use of Levenberg-Marquardt optimization
is beyond the scope of this paper. Several useful
descriptions exist[20, 16]. However, the Jacobian
H-= % warrants some explanation.

The Jacobian H is the change in the rendered
depth at each point given a change in the transfor-
mation parameter p. Any motion of the polygon on
which the point s; lies can be decomposed into mo-
tion normal to the plane and motion parallel to the
plane. Motions parallel to the plane do not change
the depth to the point. The depth only changes
with motion normal to the plane.

The change of the point s; is described by
Os;/0p, which is a linear combination of the deriva-
tives Ov/Op with the same coeflicients used during
rendering in (4). The projection of the derivative
onto the surface normal is

op | " op
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Figure 4: Comparison of the Ly norm and the Hu-
ber robust kernel used in this work, and the weight
function for weighted least squares.

The change in depth h; lies along the camera nor-
mal. Its projection onto the surface normal is
Oh; . . Oh;
=1, N, 9
op | op ®)

Equating the projections (8) and (9) we find

Bhi 1 “ 8v,~ 8Vj 6Vk
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The Jacobian H is the matrix containing all of the
gradients Oh;/0p.

3.2 Robust Estimation

The L, norm is optimal when the observation noise
is Gaussian. However, the Ly norm is known to ex-
hibit problems when the data contains outliers. For
data which may contain outliers, there are a family
of norms p() which are robust to large deviations.
These are functions which have a unique minimum
at zero and a bounded derivative far from zero, so
that large deviations provide only a small contribu-
tion to the gradient of the objective function. The
kernel used in this work is the Huber norm[19],

if |z|/ec > m/2

o(z) = { c2(1 — cos(z/c))
(11)

clz| + (1 —w/2)
shown in Figure 4. When the deviation is close
to zero, the Huber norm behaves similarly to the
L> norm. When the deviation is large, the norm
behaves similarly to Ly, i.e. the derivative of the

if |z|/c < /2

norm does not increase as the deviation increases.
Robust estimators have been used for a variety of
applications[17]. In particular, this norm has been
shown to perform well for ICP[13]. Using the ro-
bust norm, we rewrite (5) as

Tn®) =3 Y ple-hip)  (12)
and the derivatives as
VeJu = HTQR'(z-h(p))
ViJe = H'QR'H (13)
where  is a diagonal matrix of weights
wii = w(z; — hi(p)) (14)

The weight function is derived from the robust

norm, and several examples are shown in [19]. The

weight function for the norm used in this work is
c/zsin(z/c)

o) = { i

with ¢ = 1.2107. The weights are recomputed
during each iteration of Levenberg-Marquardt, re-
sulting in an iteratively reweighted least squares
(IRLS) optimization.

if |z|/c < m/2

if [ol/c>n2 (1Y)

4 Experimental results

To empirically validate the performance of the reg-
istration, we tested the algorithm using a few ex-
amples of 3D surface registration problems which
are part of a single cycle instrument placement sys-
tem. The 3D models used in these experiments
are all built using stereo algorithms which run on-
board the K9 rover using images from three dif-
ferent stereo camera pairs. Table 1 describes the

stereo camera pairs used on the rover. The ter-
Camera pair | Location FOV
Science cam | top of mast narrow
Nav cam top of mast moderate
Haz cam below solar panel | wide

Table 1: Stereo camera pairs on K9 rover

rain models derived from stereo imaging are used
for a variety of purposes including visualization for



scientists and rover operators as well as onboard
autonomous hazard avoidance. Registration of 3D
models can also enable the applications outlined in
Table 2. Examples of these are shown below.

Application Camera pair | Camera pair
Visual odometry | Nav cam Nav cam
Pose estimation | Nav cam Science cam
Target hand off | Haz cam Nav cam

Table 2: Applications of 3D registration and the
stereo pairs used for each.

4.1 Visual odometry

Visual odometry can be achieved by registration
of 3D surface models created using images from
the navigation cameras before and after the rover
moves. The transformation which aligns the views
is directly related to the change in pose of the
rover, leading to an odometry measurement be-
tween poses. For the visual odometry experiment
the rover was placed in the Marscape and incre-
mentally commanded to move forward one meter
or turn 45°. The 3D models acquired before and
after each move were registered using dead reckon-
ing as an initial guess for the alignment.

Figure 5 shows the differences in depth be-
tween the rendered surfaces using the transforma-
tion from dead reckoning, before the registration
algorithm is applied. Medium gray pixels denote
zero error, while white and black denote errors of
more than 10 cm. Figure 6 shows the depth errors
found after optimizing the Ly norm in (5) using
Levenberg-Marquardt. While the ground plane is
well aligned, there are large errors where a rock in
the foreground is misaligned. Figure 7 shows the
result of optimizing the robust norm in (12). By
minimizing the robust norm the algorithm is able
to correct the errors seen in Figure 6. This is con-
sistent with Fitzgibbon’s results and the claim that
the robust norm has a wider basin of attraction
than L,[13].

Figure 8 shows the convergence of the robust
norm through time for several runs. Typically, con-
vergence is achieved within 5-10 iterations. The
two convergence curves which show 20 and 38 iter-
ations correspond to point turns, where the overlap
in the models is poor.

Figure 5: Initial depth errors for starting guess pro-
vided by dead reckoning for the visual odometry
example. Error measured in centimeters.

Figure 6: Final depth errors after convergence with
L2 norm for the visual odometry example. Error
measured in centimeters.

Figure 7: Final depth errors after convergence with
Huber norm for the visual odometry example. Er-
ror measured in centimeters.
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Figure 8: Convergence of the norm for several vi-
sual odometry examples

4.2 Pose estimation

Pose estimation may also be done relative to a
map of the environment built earlier. This may
be done, for example, by building an extensive 3D
panoramic model using the high resolution, narrow
field of view science cameras from a single location
and using the model as a 3D map. The rover can
repeatedly register terrain models captured by the
navigation cameras against the larger more accu-
rate model as it moves. The transformation which
aligns the nav cam model to the previous map is
directly related to the pose of the vehicle in the
coordinate frame of the rover when the panoramic
model was created. Figure 9 and 10 show an ex-
ample of the registration of 3D models created by
the navigation cameras and science cameras. The
initial alignment again comes from dead reckoning,
but once the rover has localized, the next pose can
be initialized using the previous registration plus
an incremental dead reckoning estimate. Figure 11
shows the initial and final depth errors for the mod-
els in Figure 9 and Figure 10.

4.3 Feature hand off

In the context of instrument placement it may be
necessary to coordinate multiple stereo pairs. For
example, for the task of placing an instrument
against a rock in front of the rover, the Haz cams
might have a better vantage point to image the goal
location when the rover is close to a rock which
was selected by rover operators using the naviga-
tion cameras. By registering the 3D models from

Figure 9: Alignment before registration for the pose
estimation example.

Figure 10: Alignment after registration for the pose
estimation example.
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Figure 11: Depth error before and after registration
for the pose estimation example. Error measured
in centimeters.
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Figure 12: Depth error before and after registration
for goal location hand off example. Errors mea-
sured in centimeters.

the Haz cam and Nav cam, the rover can hand off
the target location from one view to the other. Fig-
ure 12 shows the depth errors before and after reg-
istration of surface models created with the Nav
cam and Haz cam.

5 Discussion

Registration of 3D surface models is an attractive
approach for rover localization. As long as the
lighting conditions permit the acquisition of images
for stereo, the resulting 3D surface models are in-
dependent of the lighting conditions. This is at-
tractive compared to 2D approaches which might
have difficulty with tracking features or recogniz-
ing places when lighting conditions change.

Furthermore, 2D visual tracking approaches re-
quire the rover to spend computational effort on
something that it may only be doing for the pur-
pose of visual odometry. However, NASA’s current
plans call for stereo vision to be used as a hazard
avoidance technique on MER in 2003 and likely on
MSL in 2009. Registering the 3D models that are
already created in order to do local path planning
and obstacle avoidance makes dual use of data that
is being generated anyway. The marginal computa-
tion for registration is less than the computational
effort for building the 3D surfaces, so most of the
computational work is already done.

Accurate stereo calibration is fundamentally im-
portant for the approach in this paper. A miscali-
bration of stereo can cause the resulting models to
be distorted by a projective transformation. Such a
deformation will not be recoverable by the param-
eters in p.

The robust estimation method used in this pa-
per works quite well, as was reported in [13]. The

surface models used in the examples here were
not “cleaned” in any way and the results are
still promising. Other reported approaches require
mesh regularization and cleaning in order to ensure
that there are no outliers before minimizing a norm
which is sensitive to large deviations. These steps
may improve the results we can acheive using ro-
bust estimation but empirically are not required for
it to work.

We are currently working to further extend this
work. Algorithmically we are investigating ways to
optimize the implementation, perhaps making use
of some very efficient existing rendering techniques.
We would also like to extend this to multiview reg-
istration in order to handle more than two views at
a time. It should be possible to extend the objec-
tive function to include a term which matches the
albedo at each point along with the depth.

In terms of rover autonomy, this method might
benefit from some sensor planning to determine
when a next view is necessary for localization. We
have already seen the difficulties with registering
views where the rover has turned far enough that
there is a small overlap between surface models.

This method is also being incorporated into a
larger demonstration of single cycle instrument
placement for improved efficiency of planetary
rovers and increased science return for future Mars
missions.
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